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Introduction

Osteointegration-based dental implants are generally accepted to 
treat complete and partial edentulism. Sound integration and main-
tenance of implants in the alveolar bone and the formation of new 
bone contribute to treatment success. However, the genetic back-
ground related to bone quality, vitamin D, melatonin, and peripheral 
circadian rhythm as elemental regulatory systems for establishing 
and maintaining osseointegration is very complex.1 The circadian 
rhythm regulates many physiological processes of human health and 

disease.2 There is growing evidence that the circadian clock could 
influence tooth development, salivary and oral epithelial homeosta-
sis, and saliva production.3 Circadian rhythm gene expression has 
been found in several epithelial craniofacial tissues, especially in 
basal cells of the oral epithelium, including the palatal and connec-
tive epithelium, and in epithelial remnants surrounding tooth roots. 
In addition, the saliva flow is known to follow a circadian rhythm.4

Bone mineralization in bone development is associated with 
circadian rhythm. Osteoblasts express circadian clock genes linked 
with the circadian signaling pathway. Also, the resorptive activ-
ity of osteoclasts shows circadian rhythmicity and is controlled by 
various endocrine hormones and cytokines. The circadian expres-
sion of many genes involved in phosphate and vitamin D metabo-
lism regulation in the skeleton has been estimated by food intake.5

Central circadian clock components have an essential role dur-
ing bone remodeling, a mechanism that strengthens the outcome 
of dental implants and preimplantation procedures such as bone 
augmentation.5 The circadian clock is implicated in bone remod-
eling due to the regulation of homeostasis in mineralized tissue. 
Circadian rhythm genes are expressed in osteoblasts. Also, the 
resorptive activity of osteoclasts shows circadian periodicity and 
is maintained by numerous endocrine hormones.5 It has been sug-
gested that the circadian clock could affect enamel formation by 
stimulating amelogenin production. In addition to enamel, circa-
dian rhythm is also essential in forming another hard tooth tis-
sue, dentin.6 During tooth development, the underlying circadian 
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rhythm components are active in both ameloblasts and odonto-
blasts during the bell phase.7 Dentine development is marked by 
incremental lines for which a circadian motif has been noticed in 
mammals. Collagen production and secretion were detected in od-
ontoblasts in a circadian manner, contributing to the periodicity 
of incremental lines in dentin. In addition, circadian rhythm gene 
polymorphisms could generate unique enamel morphology, thick-
ness, and hardness. Therefore, circadian rhythm genes could be the 
target of further treatments with the possibility of hard tooth tissue 
regeneration.6 An important marker in bone formation is osteocal-
cin. Osteocalcin is a component of the extracellular matrix of bone 
and is made by osteoblasts. Osteocalcin promoter activity is regu-
lated in a circadian manner, and bone remodeling is accelerated 
at rest.1,6 In addition to osteoblasts, osteoclasts are also crucial in 
bone remodeling. Further investigation to understand or decipher 
the circadian rhythm mechanism in bone remodeling could open 
up further opportunities for orthodontic medicine.6

Molecular basis of circadian rhythm

The core clock genes are expressed in circadian rhythmicity in 
the suprachiasmatic nucleus (SCN), and light is one of the main 
drivers of the central clock. The molecular basis of the circadian 
rhythm includes transcriptional and translocation feedback loops. 
The circadian rhythm is driven by the brain and muscle ARNTL-
like protein 1 (BMAL1 or ARNTL) and circadian locomotor out-
put cycles kaput (CLOCK) transcription factors. In contrast, tran-
scription repressors are cryptochrome (CRY) and period (PER) 
transcription factors. The central transcription factors that make 
up the activation and positive part of the molecular clock are 

BMAL1 and CLOCK. The heterodimer CLOCK:BMAL1 enters 
the nucleus, where it initiates transcription by binding to a spe-
cific sequence, the E-box, in promoters of the target genes (Fig. 
1).8 CLOCK’s main downstream goals include BMAL1 and its re-
pressors, cryptochrome (CRY1, CRY2), period (PER1, PER2, and 
PER3), and multiple clock-controlled genes (CCG).9 CRYs and 
PERs accumulate during the positive loop in the cytoplasm. They 
are controlled by casein kinase 1 (CK1) ε and CK1δ.10,11 CK1ε and 
CK1δ phosphorylate PERs for degradation. If CK1ε phosphoryl-
ates heterodimer PER:CRY, it enters the nucleus and suppresses the 
CLOCK:BMAL1 heterodimer. As a result, CRYs and PERs sup-
press their own expression.12,13 Posttranslational phosphorylation 
of CRYs and PERs promotes their degradation, which triggers a 
new circadian cycle, with increased CLOCK:BMAL1 heterodimer 
binding to the E-box of CCG.8,14 Due to sequence similarity, neu-
ronal PAS domain protein 2 (NPAS2) is orthologous to the CLOCK 
gene. NPAS2 constitutes a heterodimer with BMAL1 and triggers 
transcription of target genes. The heterodimer CLOCK:BMAL1 is 
essential for preserving circadian rhythm, and NPAS2 is a redun-
dant transcription factor that acts as a reserve plan for CLOCK in 
peripheral tissues. In the lack of CLOCK, NPAS2 is a replacement 
for forming heterodimer NPAS2:BMAL1.15

The second circadian clock regulatory loop includes the retinoic 
acid-related orphan receptor (ROR) α and RORγ, and the REV-
ERBα and REV-ERBβ genes. The CLOCK:BMAL1 heterodimer 
initiates their transcription by binding to the E-box elements of 
their promoters. RORs and REV-ERBs receptors bind to the ROR 
response element (RRE). REV-ERBα and β inhibit transcription, 
while RORα and γ stimulate the expression of target genes. RORs 
and REV-ERBs together create cyclic fluctuations in the expres-
sion of many CCG, including the regulation of BMAL1 transcrip-
tion.8,10 REV-ERBα accumulates rapidly and prevents BMAL1 

Fig. 1. The core clock mechanism of the circadian rhythm. BMAL1 and CLOCK trigger transcription of CRY and PER, nuclear receptors (REV-ERBs and RORs), 
and other clock-controlled genes (CGG). PER and CRY heterodimerize and phosphorylate by casein kinases and translate into the nucleus, where they inhibit 
the binding of the CLOCK(NPAS2):BMAL1 to the regulatory regions of target genes. In the second feedback loop, REV- ERBα inhibits the transcription of 
BMAL1 because it binds to the RORE element. In contrast, overnight, the same regulatory elements bind RORα and activate the transcription of BMAL1. 
Also, CLOCK(NPAS2):BMAL1 heterodimers induce the REV-ERBα and RORα expression. BMAL1, brain and muscle ARNTL-like protein 1; CCG, clock-controlled 
genes; CLOCK, circadian locomotor output cycles kaput; CRY, cryptochrome; NPAS2, neuronal PAS domain protein 2; PER, period; P, phosphate; RORα, 
retinoic-related orphan receptor alpha; RRE element, REV-ERB/ROR response element. Adapted according to Škrlec et al. 2020.8
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transcription, while RORα accumulates more slowly and promotes 
BMAL1 transcription. In this way, the stability and robustness of 
the rhythmicity of the internal clock system are enhanced.16 In ad-
dition, the transcriptional and translational feedback loop creates 
rhythms in the expression and levels of downstream CCG.10 All of 
these connected feedback loops create a circadian rhythm.

Circadian rhythm in osseointegration

The term osseointegration was first used to explain histological re-
marks that bone and bone marrow tissues show a tight connection 
with the surface of the endosseous titanium-based implant element 
without the formation of fibrous tissue.17 Cell culture approaches 
and animal models were utilized to characterize bone formation 
patterns on the implant surface.1 Titanium-containing biomaterial 
is often used in implantology for dental implants.6 Dental implants 
consist of an endosseous anchoring piece and transmucosal sup-
port that sustains different dentures. The benefit of a dental implant 
relies on the biological reactions to xenobiotic materials and the 
endosseous implant placement in the mandible. Furthermore, in 
acquiring a sound bone-implant connection without clinical symp-
toms and signs of inflammation or infection, osseointegration 
plays a crucial role in permanent implant immobility.1

Circadian rhythm has a vital function in cell differentiation. 
Mesenchymal stem cells are adult stem cells with multipotent abil-
ity to differentiate and could be isolated from tooth tissue, bone 
marrow, amniotic fluid, adipose tissue, and additional sources.15 
The expression profile of genes linked with osteogenic mesenchy-
mal stem cell differentiation shows that molecular circadian rhythm 
regulates mesenchymal stem cell differentiation. Circadian clock 
transcription factors control the expression of core clock genes and 
other clock-controlled genes (CCG). Tissue-specific differentia-
tion of mesenchymal stem cells could be affected by clock gene 
expression via CCG. The positioning of titanium implants creates a 
distinct cellular condition that could increase the osteogenic differ-
entiation of bone marrow mesenchymal stem cells.15 Thus, PER1 

gene expression is reduced in stromal bone marrow cells due to 
titanium-based biomaterials, essential for osseointegration.6

Furthermore, mesenchymal stem cells susceptible to various ti-
tanium substances in vitro improved osteogenic differentiation.15 
Almost 30% of genes show circadian oscillations,1,18 and among 
them in the maxillo-mandibular complex is osteocalcin. Although 
the peripheral bone circadian clock function has not been thor-
oughly investigated, implant-induced microenvironmental change 
significantly affects NPAS2 and PER2 gene expression regulation 
or dysregulation in peri-implant tissue (Table 1).18–21 It might con-
tribute a new hint to understanding the process of osseointegration.1

The role of BMAL1, CLOCK and NPAS2 in osseointegration

Successful dental implants require establishing a solid connection 
with bone tissue. Nonetheless, the clarification of how biological 
systems achieve osseointegration is, until now, insufficient.22 The 
circadian clock can affect bone absorption by regulating bone en-
ergy metabolism.23 BMAL1 plays a vital role in regulating bone ab-
sorption and formation and is a crucial component of the molecular 
circadian clock.19,24 Mutations in the BMAL1 gene in mice lead to 
ectopic calcification and abnormal cartilage reendothelialization,25 
whereas bone density is reduced in mice with the CLOCK gene 
mutation. Overexpression of the BMAL1 and CLOCK genes in-
hibits the expression of the receptor activator of the nuclear factor 
kappa-Β ligand (RANKL) gene.26 BMAL1 delays bone resorption 
and its expression inhibits NF-κB. The interaction of BMAL1 and 
NF-κB itself is significant during inflammatory processes because 
NF-κB mediates the activation of pro-inflammatory cytokines such 
as TNF-α, IL-1β, and IL-6.27 Various studies have shown that the 
placement of titanium implants has the most significant effect on 
circadian rhythm gene expression.28 NPAS2 and BMAL1 gene ex-
pression increased, while PER2 expression decreased. Biomaterials 
made of titanium with complex surfaces have a more significant ef-
fect on expressing distinctive circadian clock genes than untreated 
surfaces.28 Titanium implants with complex surfaces alter CCGs 
expression near the implant so that NPAS2 becomes a partner tran-

Table 1.  Association of circadian rhythm genes with dental tissues

Gene Gene function in dental tissues References

 BMAL1  Production in ameloblasts  Zheng et al. 201319

  Production during tooth development  Zheng et al. 201120

  Overexpression associated with enamel morphology, thickness, and hardness  Zheng et al. 201319

  Stimulates amelogenin production  Zheng et al. 201319

 CLOCK  Production in ameloblasts  Zheng et al. 201319

  Production during tooth development  Zheng et al. 201120

 NPAS2  Important for osseointegration  Morinaga et al. 201918

 PER1  Modulation by titanium in bone marrow stromal cells  Hassan et al. 201721

  Production in ameloblasts  Zheng et al. 201319

  Production during tooth development  Zheng et al. 201120

 PER2  Production in ameloblasts  Zheng et al. 201319

  Production during tooth development  Zheng et al. 201120

  Production in odontoblasts  Zheng et al. 201120

BMAL, brain and muscle ARNTL-like; CLOCK, circadian locomotor output cycles kaput; NPAS2, neuronal PAS domain protein 2; PER1, period 1.
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scription factor with BMAL1 in the NPAS2:BMAL1 heterodimer 
(Fig. 2). Based on this, it can be seen that NPAS2 is the preferred 
molecular counterpart of BMAL1 in the existence of titanium im-
plants.18 The CLOCK:BMAL1 heterodimer and NPAS2:BMAL1 
heterodimer trigger various groups of genes.29 The circadian rhythm 
regulates many CCGs, and the transition from CLOCK to NPAS2 
after titanium biomaterial implantation modifies CCG expression, 
including proteins that promote bone and implant binding.15,30 The 
expression of NPAS2 in interface tissue could therefore be the basis 
of osseointegration.15

The surface of titanium biomaterials is subject to oxidation, and 
the microenvironment around titanium biomaterials is hypoxic. 
Therefore, there is an increase in the signaling of hypoxia-induced 
factor (HIF)-1α in mesenchymal stem cells exposed to titanium bio-
materials.15,31 A hypoxic or xenobiotic microenvironment can facili-
tate molecular sensors that contain the PAS domain. BMAL1 is such 
a PAS detector for hypoxic or xenobiotic cell response. BMAL1 di-
merizes with hypoxia-induced factors and thus triggers HIF-1α for 
chondrogenic differentiation.1,18 Therefore, it is hypothesized that 
implantation of titanium materials could cause numerous conse-
quences on mesenchymal stem cells expressing NPAS2, leading to 
regulation and raised binding activity of NPAS2 to DNA.32

The microenvironment produced by titanium biomaterials pre-
fers the role of NPAS2, which can trigger the cooperative expression 
of CCGs that mediate bone and implant binding.15 The function of 
NPAS2 determines the molecular mechanism of osseointegration. 
NPAS2 in peri-implant tissue is vital in establishing osseointegra-
tion18 because it directly regulates collagen expression.1

The function of CRY and PER in osseointegration

Studies have shown that CRY2 and PER2 are essential in regulat-

ing bone volume.19,20 Thus, CRY2 acts on osteoclasts, while PER2 
affects osteoblasts.19,26 Mutations in mice’s CRY and PER genes 
led to increased osteoblast activity and bone mass.33,34 In addition 
to acting on osteoclasts, CRY2 is also crucial for the stability of the 
extracellular cartilage matrix. PER2 is vital for bone maturation, 
and the PER2 mutation promotes osteoblast proliferative activ-
ity.26 In combination with melatonin, PER2 plays a crucial role in 
modulating bone growth.35 CRY2 and PER2 affect bone mass and 
bone volume through osteoclasts and cell differentiation.6

Titanium biomaterials change the expression of circadian 
rhythm genes by increasing the expression of NPAS2 and decreas-
ing the expression of PER1 and PER2 genes.3,15

The impact of vitamin D on osseointegration

Vitamin D is a critical component in bone metabolism and is vi-
tal for calcium metabolism and the regulation of phosphorus and 
calcium homeostasis.36 Due to its anti-inflammatory properties, 
vitamin D benefits oral health as it increases bone mineral density 
and reduces bone resorption.37 Vitamin D deficiency harms new 
bone formation and bone contact with the implant. Patients with 
low vitamin D levels are more prone to dental implant failure.38

Circadian clock and extracellular cartilage matrix may es-
tablish vitamin D-regulated osteointegration. Vitamin D insuf-
ficiency negatively impacts osseointegration, resulting in a loss 
of bone and implant integration.39 NPAS2 and BMAL1 are over-
regulated around implants, reducing their expression by vitamin 
D insufficiency. NPAS2 is expressed in the extracellular cartilage 
matrix, and vitamin D deficit does not influence the extracellular 
cartilage matrix gene expression around the implant. Peripheral 
circadian rhythm is required to establish osseointegration, which 

Fig. 2. The transition from CLOCK to NPAS2 after titanium implant placement. There is a change in clock-controlled gene expression near titanium im-
plants – NPAS2 becomes a transcription partner with BMAL1. It stimulates the synthesis of proteins that promote bone and implant binding in the process 
of osseointegration. BAML1, brain, and muscle ARNTL-like protein 1; CLOCK, circadian locomotor output cycles kaput; neuronal PAS domain protein 2; CRY, 
cryptochrome; PER, period 1; REV-ERB, nuclear receptor subfamily 1 group D member 1; ROR, retinoic acid-related orphan receptor.
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triggers the production of a specified group of cartilage matrix 
proteins that could integrate the implant surface and bone tis-
sue.22 Vitamin D deficiency interferes with the osseointegration 
of titanium biomaterials.40 Therefore, implant failure may occur 
during early surgery due to osseointegration failure during the 
injury recovery phase or after the implant has been used for some 
time.21

Systemic administration of vitamin D before dental implant 
placement surgery may benefit patients.37 Vitamin D supplementa-
tion improves osseointegration in animals with systemic diseases 
and is similar in humans because vitamin D enhances the osseoin-
tegration process.38 It was observed that higher vitamin D levels 
measured on the day of surgery were associated with better radio-
logically assessed osseointegration of implants.41

When osseointegration is failed, restorative alternatives are re-
stricted to surgical removal of the implant. Therefore, satisfactory 
serum vitamin D levels are a required criterion for the curative 
success of titanium implants.21 Vitamin D deficiency has mostly 
affected NPAS2,1 essential for implant integration.

Melatonin effects on osseointegration

Bone remodeling includes cytokines, growth factors, hormones, 
and other molecules, with melatonin modulating bone formation 
and absorption.42 Melatonin is a hormone produced in the pine-
al gland and positively regulates bone formation and homeosta-
sis.43,44 Melatonin levels in saliva show a circadian rhythm with 
the highest values during the night,45 and the hypothalamus influ-
ences its production.42 In the oral cavity, melatonin may play a role 
in maintaining and regenerating alveolar periodontal and peri-im-
plant bone.43 In addition, it has anti-inflammatory and antioxidant 
effects as it destroys reactive oxygen species.42,45,46 Melatonin 
stimulates the differentiation of mesenchymal stem cells into os-
teoblasts and promotes bone formation.43,47 It also enhances type I 
collagen synthesis and increases bone sialoprotein expression.43,45 
Melatonin can affect the release of several factors that affect bone, 
such as calcitonin, corticosterone, growth factors, and immune 
factors, and is an essential modulator of calcium and phosphorus 
metabolism.43 Beneficial effects of melatonin in bone regeneration 
near titanium dental implants have been observed, whether applied 
topically to implant bearings, coated the implant, or injected near 
the implant at the time of positioning.42,48 Melatonin may play 
a role in all bone repair phases (inflammatory, proliferative, and 
remodeling) due to its regulatory effects on inflammation, anti-
oxidant properties, bone cell regulation, and collagen synthesis 
and deposition stimulation.49 In addition, melatonin increases the 
number of blood vessels, a prerequisite for supplying mineral el-
ements and migrating angiogenic and osteogenic cells.50 Conse-
quently, histological evaluation of the peri-implant bone shows 
more trabecular bone but less cortical bone and more significant 
bone contact with the implant in melatonin-treated sockets than 
untreated.51,52 The use of melatonin for osseointegration may be of 
interest because it promotes bone growth when used in combina-
tion with dental implants.43

Melatonin increases the expression of runt-related transcription 
factor 2 (RUNX2), which induces the expression of osteogenic 
genes, including bone morphogenetic proteins and osteocalcin, there-
by accelerating the synthesis and mineralization of new bone.35,53 
Melatonin is a significant regulator of osteoblast differentiation.54 
By increasing the expression of the RUNX2 gene and osteocalcin, 
melatonin reduces osteoblast apoptosis caused by oxidative stress.55 
In addition, melatonin may attenuate pro-inflammatory cytokines 

such as TNF-α, IL-12, INF-γ, IL-1β, and IL-6, while stimulating 
the production of the anti-inflammatory mediator IL-10.35,53 Mela-
tonin regulates osteoclastogenesis, oxidative stress, and autophagy 
by activating NF-κB, thereby reducing pro-inflammatory cytokine 
levels (TNF-α, IL-1β, and IL-6).56,57 Moreover, melatonin can pre-
vent peri-implantitis by inhibiting the NF-κB signaling pathway and 
reducing RANKL protein levels. In contrast, melatonin promotes 
proliferation, mineralized matrix formation, alkaline phosphatase 
activity, and osteogenic gene expression.56

The direct connection between circadian rhythm and melatonin 
is the binding of melatonin to ROR,58 which stimulates the syn-
thesis of BMAL1 and NPAS2 genes, which play an essential role 
in the osseointegration of dental implants.15 In addition, BMAL1 
inhibits the NF-κB signaling pathway that mediates the pro-in-
flammatory response, whereas melatonin has the opposite effect 
on NF-κB. The antioxidant and anti-inflammatory properties of 
melatonin limit the formation of free radicals and bone resorption 
after implant placement.58 Dental implant coatings with melatonin 
increase the expression of the RUNX2 gene, bone morphogenetic 
proteins, and osteocalcin, necessary for osteoblast function and 
bone mineralization.53,59 The local administration of melatonin 
is more effective than its systemic administration, increases cal-
cium deposition around implants, and accelerates osseointegration 
around titanium implants.53,55

Future directions

Circadian rhythm adapts to the physiological functions of the in-
dividual daily, including the process of osseointegration. Bioma-
terials in the oral cavity directly affect the peripheral circadian 
rhythm. Therefore, by modifying the components of the peripheral 
clock, we can improve the process of osseointegration. NPAS2 is 
the most significant shift in peripheral circadian rhythm after im-
plant placement that contributes to osseointegration. In addition, 
vitamin D and melatonin supplements are straightforward methods 
to improve the osseointegration of dental implants. Thus, vitamin 
D enhances the osseointegration of titanium implants and cellular 
healing processes.21 In contrast, the topical application of mela-
tonin at implant positioning may facilitate a more significant bone 
connection with the implant, thus promoting osteointegration.42 
Melatonin is available in various forms, from sublingual tablets, 
oral sprays, toothpaste, mouthwashes, and pharmaceutical gels.45 
Understanding the molecular processes involved in osseointegra-
tion requires additional research to assess the impact of different 
biomaterials on circadian rhythm in the oral cavity. This is es-
pecially important in today’s era of personalized medicine when 
knowledge of an individual’s circadian rhythm, determined based 
on chronotype through validated questionnaires, can be significant 
for treatment and could be included as an essential component of 
preoperative prediction for dental implant treatments.

Conclusion

An increasing body of evidence demonstrates the significance of 
peripheral circadian rhythms in osseointegration. The most crucial 
change in peripheral circadian rhythm during osseointegration is 
NPAS2 which might be the basis for developing treatment ap-
proaches created to enhance osseointegration or re-establish the 
integration of implants and bone. In addition to the molecular 
basis, osseointegration is also influenced by vitamin D and me-
latonin. Satisfactory serum vitamin D levels before surgery and 
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topical application of melatonin after implantation promote the 
production of new bone and increase bone thickness near titanium 
dental implants. Therefore, this approach to the osseointegration 
of titanium implants could help in new therapeutic strategies for 
dental implant treatments.
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